< Complete Python & Data Science Course for Absolute Beginners
161 casts | 26:40:19 for the total course
created by Mammoth Interactive INC
- 1. Python Introduction
-
2. Code Python on the Web
-
02.01 What is Google Colab
-
02.02 What If I Get Errors
-
02.03 How Do I Terminate a Session
-
-
3. Python Language Fundamentals: Learn Python from Scratch
-
01. Variables
-
02. Type Conversion Examples
-
03. Operators
-
04. Collections
-
05. List Examples
-
06. Tuples Examples
-
07. Dictionaries Examples
-
08. Ranges Examples
-
09. Conditionals
-
10. If Statement Examples
-
11. Loops
-
12. Functions
-
13. Parameters And Return Values Examples
-
14. Classes And Objects
-
15. Inheritance Examples
-
16. Static Members Examples
-
17. Summary And Outro
-
-
4. Data Visualization with Python and Matplotlib
-
00. Course Intro
-
01. Intro To Pyplot
-
02. Installing Matplotlib
-
03. Basic Line Plot
-
04. Customizing Graphs
-
05. Plotting Multiple Datasets
-
06. Bar Chart
-
07. Pie Chart
-
08. Histogram
-
09. 3D Plotting
-
10. Course Outro
-
-
5. Beginners Data Analysis with Pandas
-
00. Panda Course Introduction
-
01. Intro To Pandas
-
02. Installing Pandas
-
03. Creating Pandas Series
-
04. Date Ranges
-
05. Getting Elements From Series
-
06. Getting Properties Of Series
-
07. Modifying Series
-
08. Operations On Series
-
09. Creating Pandas Dataframes
-
10. Getting Elements From Dataframes
-
11. Getting Properties From Dataframes
-
12. Dataframe Modification
-
13. Dataframe Operations
-
14 Dataframe Comparisons And Iteration
-
15. Reading CSVs
-
16. Summary And Outro
-
-
6. Data Mining with Python! Real-Life Data Science Exercises
-
Introduction to Data Mining
-
-
7. 2-1 Data Wrangling - A Complete Overview
-
Data Wrangling Demystified
-
-
8. 2-2 Data Mining Fundamentals
-
01. Cluster Analysis
-
02. Classification and Regression
-
03. Association and Correlation
-
04. Dimensionality Reduction
-
-
9. 2-3 Frameworks Explained - Taming Big Data with Spark
-
01. Apache Spark - An Overview Of The Framework
-
02. Spark Key Functions
-
03. Spark Machine Learning
-
04. EXAMPLES - Using The Machine Learning Pipeline
-
-
10. 2-4 EXAMPLES - Mining and Storing Data
-
01. Text Mining
-
02. Network Mining
-
03. Matrix
-
04. SQL
-
-
11. 2-5 NLP (Natural Language Processing)
-
01 NLP Data Cleaning
-
02. Count Vectorizer
-
03. NLP Example with Spam
-
04. Tweak Model with Spam Data
-
05. Pipeline with Spam Data
-
-
12. 2-6 Conclusion and Summary
-
06. Conclusion and Challenge
-
-
13. PySpark - Build DataFrames with Python, Apache Spark and SQL
-
00 Project Preview
-
02 What Are Resilient Distributed Datasets
-
01 What Is Apache Spark
-
03A What Is A Dataframe
-
03B What You'll Need
-
-
14. PySpark - Build DataFrames from Spreadsheets
-
04 Start A Spark Session
-
05 Load Data As A CSV
-
06 Perform Basic Dataframe Operations
-
07 Format Dataframe Table
-
08 Perform Dataframe Math Operations
-
09 Perform Dataframe Queries
-
10 Build SQL Queries With Spark
-
-
15. Python Data Analysis Bootcamp with Pandas and NLTK
-
00 Project Preview
-
01 Convert CSV File To A Python List
-
02 Tokenize Text Data
-
03 Find Most Popular Lemmatized Words
-
04 Build Dataframes Per Part Of Speech
-
05 Plot Word Frequency
-
-
16. Exploratory Data Analysis Bootcamp with Python, Seaborn and Pandas
-
00 Project Preview
-
01 Load A Dataset
-
02 Analyze The Main Feature
-
03 Analyze Numerical Features
-
04 Analyze Categorical Features
-
-
17. Visualize - Exploratory Data Analysis Bootcamp with Python, Seaborn and Pandas
-
01 Find Relationships Between Numerical Features
-
02 Find Relationships Between Categorical Features
-
03 Build Conditional Plots
-
-
18. Overview - Introduction to Databases with Python SQL
-
00 Course Overview
-
01 What You'll Need
-
-
19. 01 Introduction to data
-
01 Why You Must Know How To Work With Data
-
-
20. 02 Entity Relationship Modeling (ERM)
-
01 How To Read An ER Model
-
-
21. 03 Introduction to databases and relational databases
-
01 What Is A Database
-
02 What Is A Relational Database
-
-
22. 04 How to build an organized database
-
01 How To Design Columns And Data Types
-
02 Use Normal Forms To Check Your Design
-
-
23. 05 Build a SQLite database with Python
-
01 Build A Sqlite Database With Python
-
02 Add An Entry To The Table With SQL
-
03 Add More Records To The Table
-
04 Build A Second Table For Cross-Referencing
-
05 Select Rows That Meet Conditions
-
-
24. Feature Analysis and Data Science with Stocks for Beginners
-
Course Overview
-
01 Load And Create Data
-
02 Perform Exploratory Data Analysis
-
03 Visualize Data With Different Plots
-
04 Analyze Features With More Plots
-
05 Build Plots With Seaborn
-
06 Build A Bokeh Plot
-
07 Build A 3D Scatter Plot
-
08 Rank Feature Importance
-
09 Compare Positive And Negative Returns
-
-
25. The Definitive Python Time Series Analysis Masterclass
-
00 Project Preview
-
01 Load Crypto Prices Dataset
-
02 Visualize Bitcoin Price Trend
-
03 Predict Price With Facebook Prophet
-
04 Analyze Model Performance
-
05 Visualize Model Results
-
06 Predict Monthly Trend
-
07 Predict Weekly Trend
-
08 Compare Final Stock Price Of Different Strategies
-
-
26. 1). Stock Market Data Analysis and Visualization
-
00 Project Preview
-
01 Fetch Stock Data
-
02 Visualize Stock Data Features
-
03 Calculate Daily Return
-
04 Compare Returns Of Different Stocks
-
05 Compare Closing Prices
-
-
27. 2). Stock Market Data Analysis and Visualization
-
01 Visualize Standard Deviation And Expected Returns
-
02 Calculate Value At Risk
-
03 Monte Carlo Analysis To Estimate Risk
-
04 Visualize Price Distribution
-
-
28. Scrape the Web - Python and Beautiful Soup Bootcamp
-
00 What Is Web Scraping
-
01 What You'll Need
-
02 Build An Html Webpage To Scrape
-
03 Select Data Structures From A Webpage
-
04 Extract URLsAnd Text
-
05 Work With Tags
-
06 Work With Attributes
-
07 Add Navigation To A String
-
08 Navigate Html Contents
-
09 Find All Filter
-
-
29. Build Interactive Python Dashboards with Plotly and Dash
-
01 Project Preview
-
02 What Is Plotly And Dash
-
03 What You'll Need
-
1-01 Build A Dash App
-
1-02 Build A Graph In The Dash App
-
2-01 Load Data From Vega Datasets
-
2-02 Build The Layout
-
2-03 Build A Chart With Altair
-
-
30. Data Mining with Python and NumPy - Build a Video Recommender System
-
00 Project Preview
-
01 Build A Dataset
-
02 Compute Support And Confidence - If A Person Watches X, They Will Watch Y
-
03 Compute Support And Confidence For All Channels
-
04 Determine Which Videos Are Best To Recommend
-